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Exosomes play significant roles in key functions of the female reproductive system, such as oogenesis, implantation success, 
embryo development, and proper fertilization. Exosomes are fundamental cell-derived structures involved in facilitating 
intercellular communication. Functional connectivity between cells is essential for the viability, development, and coordination 
of the female reproductive system. It has been demonstrated that the information carried by exosomes is crucial for these 
cooperative biological mechanisms.

Exosomes are formed by encapsulating biological molecules from the cells of origin. With these features, they contribute both to 
the reorganization of cellular functions and to the collective functioning of cell populations. Additionally, the content of exosomes 
is used to monitor the diagnostic and therapeutic processes of various gynecological diseases. They contain genetic and 
proteomic data that can be utilized as biomarkers or therapeutic targets in gynecological cancers and pregnancy-related 
disorders.

In this context, the roles of exosomes in major female reproductive disorders-including endometriosis, premature ovarian failure, 
polycystic ovary syndrome, Asherman’s syndrome, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia are 
reviewed.
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INTRODUCTION

Exosomes are extracellular vesicles with a double-layered 
lipid membrane secreted by cells.1-3 These vesicles 
typically measure between 30-150 nm in diameter.4 
Their contents include RNA molecules, proteins, lipids, 
and occasionally DNA.5-7 These components regulate 
various cellular functions mediated by exosomes.8 Based 
on size, surface markers, biogenesis, and content, three 
major types of extracellular vesicles are recognized: 
apoptotic bodies, microvesicles, and exosomes.9,10 
Exosomes are effective paracrine regulators of 
intercellular communication. In recent years, they have 
been shown to participate in biological functions such 
as metabolism regulation, cell proliferation, apoptosis, 
angiogenesis, antigen presentation, inflammation, 
tumor pathogenesis, tissue repair, and reproduction.11-13 
Exosomes are produced through the inward budding of 
endosomal membranes, forming multivesicular bodies, 
which later fuse with the plasma membrane to release 
exosomes.14 They interact with target cells via ligand-receptor 

binding or endocytosis.15 Following this interaction, vesicles 
are internalized by phagocytosis.2,16 Functional protein 
groups found in exosomes include β-actin, GPI-anchored 
proteins, heat shock proteins (HSP8, HSP90), tubulin, and 
tetraspanins such as CD9, CD63, and CD8.17 Under both 
physiological and pathological conditions, exosomes reflect 
the molecular characteristics of their donor cells. This makes 
them valuable prognostic and diagnostic biomarkers.18,19 
Exosomes have been found to be secreted from various parts 
of the female reproductive system, including the fallopian 
tube epithelium, follicular fluid, endometrium, uterus, and 
placenta.20-23 Proper reproductive function and successful 
pregnancy rely heavily on effective intercellular communication. 
Oogenesis, follicular development, implantation, fertilization, 
and embryo development are closely tied to maternal-
embryo cellular interaction during pregnancy.13,24,25 Studies 
have confirmed both direct and indirect roles of exosomes in 
cellular communication.26-28

Exosomes communicate with recipient cells and 
thereby transferring their cargo.29-31 Once exosomes are 
internalized, they initiate physiological processes by 
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delivering bioactive molecules such as coding and non-
coding RNAs, proteins, and lipids. These molecules 
modulate the functions of the recipient cells.32-34 
Studies on human and animal models have demonstrated 
that exosomes are involved in follicular development, oocyte 
maturation, and embryo formation. They are also known to 
carry microRNAs (miRNAs) involved in meiotic resumption and 
ovulation signaling pathways.35 miRNAs are non-coding RNAs 
composed of 21-24 nucleotides and participate in various 
biological processes. They regulate oocyte development, 
follicular growth, implantation, and embryo development 
by targeting key genes.36 The most commonly affected 
signaling pathways by miRNAs include Wnt (Wingless), 
neurotrophin, epidermal growth factor receptor (EGFR), 
and TGF-β (transforming growth factor-beta) pathways.37-39 
Research into the roles of exosomes in reproductive disorders 
is expanding rapidly. Due to their diagnostic and therapeutic 
potential, exosomes are anticipated to play an increasingly 
significant role in future gynecological disease management.40 
This review focuses on their implications in polycystic 
ovary syndrome (PCOS), premature ovarian failure (POF), 
Asherman’s syndrome, endometriosis, endometrial cancer, 
cervical cancer, ovarian cancer, and preeclampsia.

Polycystic Ovary Syndrome 

PCOS is an endocrine disorder characterized by 
ovulatory dysfunction and hyperandrogenism. Affecting 
6-8% of women globally, PCOS is associated with 
infertility, obesity, insulin resistance, dyslipidemia, 
type 2 diabetes, and cardiovascular diseases.41-45 
Follicular fluid analyses from PCOS patients revealed 
increased expression levels of miR-25-3p, miR-126-3p, 
miR-143-3p, miR-146a-5p, miR-193b-3p, miR-199a-5p, 
miR-199a-3p, miR-199b-3p, miR-629-5p, miR-4532, miR-
4745-3p, and miR-6087. Additionally, elevated levels of 
miR-10a-5p, miR-18a-3p, miR-20b-5p, miR-23b-3p, miR-98-
5p, miR-106a-5p, miR-141-3p, miR-200a-3p, miR-200c-3p, 
miR-382-5p, miR-483-5p, miR-483-3p, and miR-3911 were 
observed. Changes in tRNA and piRNA expression patterns 
were also noted in exosomes derived from PCOS patients.46-48 
These miRNA alterations are implicated in the mitogen-
activated protein kinase signaling pathway, circadian 
rhythm regulation, endocytosis, and overall PCOS risk.46-

48Another study reported increased expression of S100-A9 
in the exosomes of PCOS patients.49 S100-A9, a calcium-
binding protein secreted by ovarian, granulosa, and immune 
cells, is involved in cell cycle regulation, proliferation, and 
inflammation.50,51 These exosomes were shown to activate 
the NF-κB signaling pathway in granulosa-like tumor cells and 
elevate pro-inflammatory factor expression.49 This inflammatory 
mechanism may underlie reproductive dysfunction in PCOS.41,49 
In addition to their diagnostic value, exosomes may offer 
therapeutic benefits. For instance, exosomes derived from 
adipose mesenchymal stem cells (MSCs) alleviated PCOS 
symptoms by inhibiting apoptosis via miR-323-3p and altering 
PDCD4 expression.52 

Premature Ovarian Failure

POF is an infertility disorder characterized by 
hypergonadotropism, amenorrhea, and estrogen deficiency 
due to follicular dysfunction. It affects approximately 1% 
of women aged 30-39 years.53-55 While its etiology remains 
unclear, POF is considered a heterogeneous condition 
influenced by both genetic and environmental factors.56 
Recent studies have investigated the therapeutic potential 
of exosomes in POF. For example, exosomes derived from 
placenta-derived (PD)-MSCs increased the expression of 
antioxidant enzymes such as catalase and peroxiredoxin 
(PRDX1) in ovariectomized rats, improving ovarian function 
and reducing mitochondrial reactive oxygen species levels. 
Similarly, human amniotic epithelial cell-derived exosomes 
containing miR-1246 were found to restore ovarian 
function in POF mice via modulation of apoptosis- and 
phosphatidylinositol-related pathways.57 Exosomes derived 
from various MSCs also improved follicular morphology and 
suppressed apoptosis through miR-664-5p, targeting p53.58 
Another study demonstrated that bone marrow-derived MSC 
(BMSC) exosomes containing miR-144-5p targeted PTEN, 
inhibited apoptosis, and improved ovarian function in POF 
rats.59 Collectively, these studies suggest that exosome-
based therapy could represent a promising approach for the 
treatment of POF.

Asherman Syndrome

Asherman syndrome is characterized by intrauterine 
adhesions caused by trauma, leading to hypomenorrhea 
and infertility.60 These scar tissues obstruct blastocyst 
implantation and result in infertility. Although surgical 
intervention is commonly used to treat this condition, 
alternative therapeutic strategies are still required.61,62 
Recent studies suggest that exosomal therapy could be 
beneficial in Asherman syndrome. In a rat model, MSC-
derived exosomes were shown to reduce fibrosis and 
promote proliferation and vascularization in uterine tissue. 
Following exosome application, gene expression levels of 
matrix metalloproteinases MMP-2, MMP-9, proliferating cell 
nuclear antigen, CD31, and vascular EGFR were increased, 
while tissue inhibitor of metalloproteinase-2 levels decreased. 
These findings suggest that exosomes could be promising 
biomolecules for treating Asherman syndrome.

Endometriosis

Endometriosis is a multifactorial, estrogen-dependent 
disorder characterized by the presence of endometrial 
tissue outside the uterine cavity. The main clinical 
manifestations include pelvic pain and infertility.64-66 
Currently, no definitive treatment ensures the complete 
resolution of symptoms or long-term remission.67,68 
Exosomes have emerged as both therapeutic agents and 
biomarkers for understanding the pathophysiology of 
endometriosis. Some studies have identified novel diagnostic 
targets, while others suggest therapeutic roles for exosomes. 
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Exosomes derived from the endometrium have contributed 
significantly to elucidating the underlying mechanisms 
of endometriosis. In one study, exosomes isolated from 
peritoneal fluid samples of patients with endometriosis 
contained histone type 2-C, PRDX1, inter-α-trypsin inhibitor 
heavy chain H4, annexin A2, and tubulin α-chain.69 
Another study examining tissue and plasma-derived 
exosomes from endometriosis patients reported significant 
differences in miRNA and lncRNA profiles. Decreased 
expression was noted in lncRNAs LINC00293, LINC00929, 
MEG8, SNHG25, and RP5-898J17.1, while increased 
expression was observed in LINC00998, NEAT1, PVT1, H19, 
and RP4-561L24.3. These RNA molecules influence signaling 
pathways associated with angiogenesis and inflammation.70 
Exosomal miRNAs such as miR-130b, miR-145, miR-342, 
miR-365, miR-425, miR-432, miR-451a, miR-486-5p, miR-505, 
miR-1908, miR-4488, and miR-6508 have shown significant 
associations with inflammatory processes in endometriosis.71 
A recent study proposed that elevated serum levels 
of exosomal miR-22-3p and miR-320a could serve as 
diagnostic markers for endometriosis.72 These findings 
highlight the potential of exosomes in improving diagnostic 
accuracy and developing novel treatment approaches. 
Another essential feature of exosomes is their therapeutic 
potential. Exosomes from healthy endometrial epithelial cells 
carry molecules crucial for embryo-endometrial interaction 
during implantation.72 Application of these exosomes 
in endometriosis models has shown beneficial effects 
in modulating the ectopic endometrial environment.73-76 
Proteins such as focal adhesion kinase and various 
surface receptors were shown to influence the adhesive 
and migratory capacities of trophoblast cells via 
exosomal signaling.77 miRNAs like miR-17, miR-30d, miR-
106a, and miR-200c were found to play critical roles in 
implantation success when transferred by exosomes.29,78,80 
M2 macrophage-derived exosomes exhibit regenerative 
properties that may reduce endometriotic lesions. These 
exosomes, which are underrepresented or altered in patients 
with endometriosis, contribute to macrophage activation 
through miR-223.81,82 Wu et al.83 demonstrated that miR-
214 suppresses fibrosis and promotes lesion regression. 
Collectively, these studies suggest that exosomes may 
modulate immune escape, cell proliferation, angiogenesis, 
and lesion invasion in endometriosis. Exosomes derived 
from ectopic or shed endometrial tissue might also induce 
metaplasia or tissue repair in recipient cells through the 
miRNAs and specialized proteins they carry.84

Endometrial Cancers

Endometrial cancer is the fourth most common malignancy 
of the female reproductive system.85 While most cases 
are diagnosed early due to postmenopausal bleeding, 
approximately 20% are identified at an advanced stage.86,87 
Surgical procedures, radiotherapy, and chemotherapy are 
commonly employed in treatment, but these approaches are 
often insufficient. Therefore, identifying new molecular targets 
and biomarkers is critical for effective disease management. 
Exosomes play important roles in the pathogenesis, 

progression, diagnosis, and potential treatment of endometrial 
cancer. Communication between endometrial fibroblasts 
and cancer cells via exosomes has been proposed.88 In one 
study, exosomes derived from cancer-associated fibroblasts 
lacked miR-148b, contributing to tumor progression. Under 
normal conditions, miR-148b suppresses DNA (cytosine-
5)-methyltransferase 1, a protein involved in metastasis by 
promoting epithelial-mesenchymal transition.89 The absence 
of miR-148b in CAF-derived exosomes is believed to drive 
endometrial cancer progression through this mechanism. 
Furthermore, exosomes isolated from the plasma of 
endometrial cancer patients were shown to promote 
angiogenesis in human umbilical vein endothelial cells 
by activating the PI3K/AKT/VEGFA signaling pathway.90 
miR-320a, which targets hypoxia-inducible factor 1-alpha, 
normally suppresses VEGFA expression and cell proliferation. 
However, reduced levels of miR-320a in CAF-derived 
exosomes may facilitate malignancy in endometrial cancer.91 
Exosomes from the serum of PCOS patients have been reported 
to enhance the migration and invasion of endometrial cancer 
cells via upregulation of miR-27a-5p, which targets SADM4.92 
In another study, 114 dysregulated miRNAs were 
identified in exosomes isolated from peritoneal lavage 
fluid of endometrial cancer patients. Notable miRNAs 
included miR-10b-5p, miR-34b-3p, miR-34c-5p, miR-34c-
3p, miR-449b-5p, miR-200b-3p, miR-383-5p, and miR-
2110, all of which were proposed as novel biomarkers.93 
These studies suggest the potential importance of exosome-
derived data in endometrial cancer research. Additionally, they 
indicate that the sample type and cellular origin of exosomes 
may be critical for accurate diagnosis and effective therapeutic 
targeting. The biological source of exosomes could influence 
tumor behavior, highlighting the need for careful evaluation of 
exosome origin in both research and clinical applications.

Cervical Cancer

Cervical cancer originates from squamocolumnar junction 
cells of the cervix and is closely associated with the 
pathogenesis of human papillomavirus infection.94,95 Early 
diagnosis is crucial for preventing disease progression 
and improving outcomes.96 Consequently, identifying novel 
biomarkers for early detection is of great clinical significance. 
Exosomal miRNAs have been shown to play a role in 
the progression of cervical cancer. Increased expression 
levels of miR-21, miR-146a, miR-221-3p, miR-222, let-
7d-3p, and miR-30d-5p were found in cervical lavage 
samples and cell lines, while plasma levels of miR-125a-
5p were decreased in cervical cancer patients.97-102 
Among these, miR-221-3p has been identified as a key 
regulator of angiogenesis through its modulation of the 
thrombospondin-2 gene.103 These findings support the 
use of exosomal miRNAs and other molecules as potential 
diagnostic and therapeutic biomarkers for cervical cancer. 
Moreover, exosomes derived from cervical cancer cell lines 
have been found to carry high levels of miRNAs targeting 
Hedgehog signaling pathway components such as PTCH1, 
smoothened, frizzled family receptor, sonic hedgehog 
signaling molecule, Indian hedgehog signaling molecule. This 
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pathway is implicated in cervical cancer growth, metastasis, 
invasion, and drug resistanc.104 Exosome-based analysis of 
this pathway may help identify novel therapeutic agents that 
can inhibit Hedgehog signaling and halt disease progression. 
Ongoing research has also demonstrated the potential of 
exosomes as therapeutic agents. For example, exosomes 
enriched with miR-22 have shown a positive effect on 
radiotherapy efficacy by downregulating MYCBP (c-Myc 
binding protein) and hTERT (human telomerase reverse 
transcriptase) gene expression.105 Given the molecular cargo 
carried by exosomes, they may hold potential for contributing 
to both diagnosis and therapy in the management of cervical 
cancer.

Ovarian Cancer

Ovarian cancer is the most lethal gynecological 
malignancy and ranks among the most prevalent cancers 
affecting the female reproductive system.106 More than 
50% of patients are diagnosed at an advanced stage, 
contributing to a five-year survival rate of less than 50%.85,107 
The poor prognosis and quality of life among ovarian 
cancer patients are partly attributed to the absence of 
effective early diagnostic tools. Therefore, the development 
of novel diagnostic and therapeutic strategies is essential 
for reducing disease incidence and improving outcomes.108 
Exosomes secreted by ovarian cancer cells have been shown 
to play significant roles in tumor progression, metastasis, 
and invasion. Exosomal proteins such as TSG101, CD9, 
CD24, CD44, and CD63 contribute to the development of 
ovarian cancer by facilitating intercellular communication. 
Molecules like HSP27, HSP70, and HSP90 are highly expressed 
in ovarian cancer patients and are involved in disease 
pathogenesis.109-113 Other enzymes-such as aldehyde reductase, 
phosphoglycerate isomerase, fatty acid synthase, PRDX1, 
and major histocompatibility complex class I and II antigens-
also play roles in tumor development and metastasis108,114. 
In addition to their roles in tumor biology, exosomal proteins 
are involved in drug resistance. Elevated levels of annexin A3 in 
exosomes have been linked to increased platinum resistance in 
ovarian cancer cells.115 Exosomal miRNAs including miR-106a, 
miR-130a, miR-221, miR-222, miR-433, and miR-591 have 
also been associated with drug resistance mechanisms.116-120 
Exosome-associated miRNAs such as miR-21, miR-184, 
miR-193b, miR-200a, miR-200b, miR-200c, miR-203, miR-
214, and miR-215 have shown potential as diagnostic 
biomarkers for ovarian cancer.112,114,121-123 Additional 
miRNAs like miR-25, miR-29b, miR-100, miR-105, miR-
150, miR-187, miR-221, and miR-335 are implicated in 
the development of malignant ovarian tumors.112,114,124 
Notably, miR-21 has emerged as a critical player in oncogenesis 
and metastasis in serous ovarian carcinoma, functioning 
as an oncomiR.125 Moreover, exosome-delivered molecules 
have therapeutic potential. For instance, miR-29c, miR-101, 
miR-128, miR-182, miR-506, and miR-520d-3p are under 
investigation as possible treatment targets for ovarian cancer.126 
Together, these studies suggest that non-coding RNAs and 
proteins delivered via exosomes may play important roles 
in the biology, diagnosis, and treatment of ovarian cancer. 

Gaining a better understanding of the mechanisms through 
which exosomes influence ovarian cancer progression could 
potentially contribute to the development of more effective 
therapies and improved disease management.

Preeclampsia

Preeclampsia is a hypertensive disorder of pregnancy 
responsible for 10-15% of all fetal deaths. It is associated 
with significant maternal and fetal morbidity and typically 
occurs after the 20th week of gestation. The condition is 
often characterized by placental hypoxia.127-130 Despite 
considerable research, the molecular mechanisms 
underlying preeclampsia remain unclea.131-133 
Recent evidence suggests that exosomes released by 
placental trophoblasts into maternal circulation may contribute 
to the pathogenesis of preeclampsia.134 Hypoxic conditions in 
the placenta are known to increase the release of exosomes 
from the syncytiotrophoblast layer.135,136 Therefore, analyzing 
the contents of PD exosomes is critical for understanding 
disease pathogenesis and improving diagnostic capabilities. 
Increased levels of syncytin-a protein involved in the 
differentiation of syncytiotrophoblasts from villous 
trophoblasts-have been found in the exosomes of 
preeclamptic patients. These trophoblasts play a crucial role 
in remodeling maternal spiral arteries and differentiating 
vascular endothelial and smooth muscle cells.137-139 
Exosomal profiling in preeclamptic patients revealed that miR-
23a-3p, miR-125b-2-3p, miR-144-3p, miR-192-5p, miR-205-5p, 
miR-208a-3p, miR-335-5p, miR-451a, miR-518a-3p, and miR-
542-3p were downregulated. In contrast, miR-7a-5p, miR-
17-5p, miR-26a-5p, miR-30c-3p, miR-141-3p, miR-199a-3p, 
miR-221-3p, miR-584-5p, miR-744-5p, and miR-6724-5p were 
upregulated.140-143

Safety of Exosomes

Exosomes were shown to distribute into all body compartments 
bypassing blood-brain barrier, blood testis barrier and blood 
follicle barriers.144-146 This enables them to be used as diagnostic 
agents of different diseases as well as direct therapeutic 
agents and possibly as drug delivery cargos. Specific tissue 
cell culture exosomes were classified as enhanced exosomes 
while natural in vivo produced exosomes from stem cells 
can be classified as naive exosomes.147 Naive exosomes are 
mostly obtained from human umblical cord stem cells, human 
umblical cord blood stem cells, human adipose tissue derived 
adult MSCs, human BMSC MSCs, human induced pluripotent 
stem cell derived MSCs.148 Exosomes were not reported to 
cause immunologic reactions and can be applied to the area 
of inflamation.149 Exosomes were not shown to form teratomas 
unlike stem cell therapie.150

Advancements in technology are driving progress in the 
diagnostic and therapeutic strategies for gynecological 
diseases. However, new approaches are still needed to 
address the complexities of these conditions. Research 
suggests that exosomes offer promising potential 
in gynecological disorders by providing meaningful 
insights for diagnosis, treatment, and disease monitoring. 
In conclusion, exosome-based studies are expected to make 
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substantial contributions to understanding and managing 
gynecological diseases, particularly through the identification 
of novel diagnostic markers, therapeutic targets, and improved 
patient monitoring strategies.
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